

Project Dormant

This project was purpose built for a need at a previous workplace of mine.

As far as I could tell, that was the only place this was used and since my
departure from that workplace they have slowly switched to other projects for
their deployments.

I don’t use AWS at my current workplace, or in any personal projects and so
haven’t needed to use this.

In the future it’s likely I’ll only have time for small changes in this project.

Bespin

An opinionated wrapper around Amazon Cloudformation that reads yaml files.
and make things happen.

[image: _images/bespin.png]
 [https://travis-ci.org/delfick/bespin]The documentation can be found at http://bespin.readthedocs.io

Installation

Just use pip:

pip install bespin

Usage

Once bespin is installed, there will be a new program called bespin.

When you call bespin without any arguments it will print out the tasks you
have available.

You may invoke these tasks with the task option.

Simpler Usage

To save typing --task, --stack and --environment too much
, the first positional argument is treated as task
(unless it is prefixed with a -); the second positional argument
(if also not prefixed with a -) is taken as the environment and the third is
treated as the stack.

So:

$ bespin --task deploy --environment dev --stack app

Is equivalent to:

$ bespin deploy dev app

Logging colors

If you find the logging output doesn’t look great on your terminal, you can
try setting the term_colors option in bespin.yml to either light or
dark.

The yaml configuration

Bespin reads everything from a yaml configuration. By default this is a
bespin.yml file in the current directory, but may be changed with the
--bespin-config option or BESPIN_CONFIG environment variable.

It will also read from ~/.bespin.yml and will be overridden by anything in
the configuration file you’ve specified.

Tests

Install testing deps and run the helpful script:

pip install -e .
pip install -e ".[tests]"
./test.sh

Configuration

Bespin is configured via a YAML file that contains Bespin configuration,
environment specific configuration, and stack specific configuration.

Layout

The layout of your directory is configured by default to look something like:

root/
 bespin.yml
 <stack>.json
 <stack2>.yaml

 <environment1>/
 <stack>-params.json
 <stack2>-params.yaml

 <environment2>/
 <stack>-params.json
 <stack2>-params.yaml

So say you have two stacks, one called app and one called dns, along with
only one environment called dev:

root/
 bespin.yml
 app.json
 dns.json

 dev/
 app-params.json
 dns-params.json

and your bespin.yml would look something like:

environments:
 dev:
 account_id: 0123456789
 vars:
 variable1: value1

stacks:
 app:
 <options>

 dns:
 <options>

Where <options> are the options for that stack.

Note

The location of the stack template file is configured by the
stack_json or stack_yaml option. The location of the params file is
configured by the params_json or params_yaml option. Alternatively
parameters can be specified inline (inside bespin.yml) using params_yaml.

Bespin

assume_role = (optional) string

An iam role to assume into before doing any amazon requests.

The iam role can also be set via the ASSUME_ROLE environment variable.

This behaviour can be disabled by setting the NO_ASSUME_ROLE
environment variable to any value.

chosen_artifact = (default=”“) string

The value of the –artifact option. This is used to mean several things via the tasks

chosen_stack = (default=”“) string

The stack to pass into the task

chosen_task = (default=”list_tasks”) string

The task to execute

config = file

Holds a file object to the specified Bespin configuration file

configuration = any

The root of the configuration

dry_run = (default=False) boolean

Don’t run any destructive or modification amazon requests

environment = (optional) string

The environment in the configuration to use.

When a stack is created the stack configuration is merged with the
configuration for this environment.

extra = (default=”“) string

Holds extra arguments after a – when executed from the command line

extra_imports = [[string, string] , …]

Any extra files to import before searching for the chosen task

flat = (default=False) boolean

Used by the Show task to show the stacks as a flat list. Set by --flat

no_assume_role = (default=False) boolean

Boolean saying if we should assume role or not

Stack

alerting_systems = (optional) { string : <options> }

Configuration about alerting systems for downtime_options

endpoint = (required) string

Endpoint of the system

name = “{_key_name_1}”

The name of this system

type = string_choice

The type of this system

verify_ssl = (default=True) boolean

Boolean saying whether to verify ssl

artifact_retention_after_deployment = (default=False) boolean

Delete old artifacts after this deployment is done

artifacts = { string : <options> }

Options for building artifacts used by the stack

archive_format = (default=”tar”) string_choice

The archive file format to use on the artifact (tar, zip)

cleanup_prefix = (optional) string

The prefix to use when finding artifacts to clean up

commands = [<options> , …]

Commands that need to be run to generate content for the artifact

compression_type = string_choice

The compression to use on the artifact

files = [<options> , …]

Any files to add into the artifact

For example:

files:
 - content: "{__stack__.vars.version}"
 path: /artifacts/app/VERSION.txt

history_length = integer

The number of artifacts to keep in s3

Note

These only get purged if the stack has artifact_retention_after_deployment set
to true or if the clean_old_artifacts task is run

not_created_here = (default=False) boolean

Boolean saying if this artifact is created elsewhere

paths = [[string, string] , …]

Paths to copy from disk into the artifact

upload_to = string

S3 path to upload the artifact to

auto_scaling_group_name = (optional) string

The name of the auto scaling group used in the stack

bespin = any

The Bespin object

build_after = [string, …]

A list of stacks that should be built after this one is buildt

build_env = [[string, (string_or_int_as_string)] , …]

A list of environment variables that are necessary when building artifacts

build_first = [string, …]

A list of stacks that should be built before this one is built

build_timeout = (default=1200) integer

A timeout for waiting for a build to happen

command = (optional) string

Used by the command_on_instances task as the command to run on the instances

confirm_deployment = (optional) <options>

Options for confirming a deployment

auto_scaling_group_name = (optional) string

The name of the auto scaling group that has the instances to be checked

deploys_s3_path = (optional) [[string, (integer)] , …]

A list of s3 paths that we expect to be created as part of the deployment

sns_confirmation = (optional) <options>

Check an sqs queue for messages our Running instances produced

deployment_queue = (required) string

The sqs queue to check for messages

timeout = (default=300) integer

Stop waiting after this amount of time

version_message = (required) string

The expected version that indicates successful deployment

url_checker = (optional) <options>

Check an endpoint on our instances for a particular version message

check_url = (required) string

The path of the url to hit

endpoint = (required) delayed

The domain of the url to hit

expect = (required) string

The value we expect for a successful deployment

timeout_after = (default=600) integer

Stop waiting after this many seconds

zero_instances_is_ok = (default=False) boolean

Don’t do deployment confirmation if the scaling group has no instances

dns = (optional) dns

Dns options

downtimer_options = (optional) { valid_string(valid_alerting_system) : <options> }

Downtime options for the downtime and undowntime tasks

hosts = [string, …]

A list of globs of hosts to downtime

env = [[string, (string_or_int_as_string)] , …]

A list of environment variables that are necessary for this deployment

environment = “{environment}”

The name of the environment to deploy to

ignore_deps = (default=False) boolean

Don’t build any dependency stacks

key_name = “{_key_name_1}”

The original key of this stack in the configuration[‘stacks’]

name = (default=”{_key_name_1}”) string

The name of this stack

netscaler = (optional) <options>

Netscaler declaration

configuration = (optional) { string : { string : netscaler_config } }

Configuration to put into the netscaler

configuration_password = (optional) string

The password for configuration syncing

configuration_username = (optional) string

The username for configuration syncing

dry_run = to_boolean

Whether this is a dry run or not

host = (required) string

The address of the netscaler

nitro_api_version = (default=”v1”) string

Defaults to v1

password = delayed

The password

syncable_environments = (optional) [valid_environment, …]

List of environments that may be synced

username = (required) string

The username

verify_ssl = (default=True) boolean

Whether to verify ssl connections

newrelic = (optional) <options>

Newrelic declaration

account_id = (required) string

The account id

api_key = (required) string

The api key to newrelic

application_id = (required) string

The application id

deployed_version = (required) string

Deployed version

env = [[string, (string_or_int_as_string)] , …]

Required environment variables

notify_stackdriver = (default=False) boolean

Whether to notify stackdriver about deploying the cloudformation

params_json = valid_params_json

The path to a json file for the parameters used by the cloudformation stack

params_yaml = valid_params_yaml

Either a dictionary of parameters to use in the stack, or path to a yaml file with the dictionary of parameters

role_name = string

The IAM role that cloudformation assumes to create the stack

scaling_options = <options>

Options for the scale_instances command

highest_min = (default=2) integer

No description

instance_count_limit = (default=10) integer

No description

sensitive_params = (default=[‘Password’]) [string, …]

Used to hide sensitive values during build

skip_update_if_equivalent = [[delayed, delayed] , …]

A list of two variable definitions. If they resolve to the same value, then don’t deploy

ssh = (optional) <options>

Options for ssh’ing into instances

address = (optional) string

The address to use to get into the single instance if instance is specified

auto_scaling_group_name = (optional) string

The logical id of the auto scaling group that has the instances of interest

bastion = (optional) string

The bastion jumpbox to use to get to the instances

bastion_key_location = (optional) string

The place where the bastion key may be downloaded from

bastion_key_path = (default=”{config_root}/{environment}/bastion_ssh_key.pem”) string

The location on disk of the bastion ssh key

bastion_user = (required) string

The user to ssh into the bastion as

instance = (optional) [string, …]

The Logical id of the instance in the template to ssh into

instance_key_location = (optional) string

The place where the instance key may be downloaded from

instance_key_path = (default=”{config_root}/{environment}/ssh_key.pem”) string

The location on disk of the instance ssh key

storage_host = (optional) string

The host for the storage of the ssh key

storage_type = (default=”url”) string_choice

The storage type for the ssh keys

user = (required) string

The user to ssh into the instances as

stack_json = valid_stack_json

The path to a json file for the cloudformation stack definition

stack_name = (default=”{_key_name_1}”) string

The name given to the deployed cloudformation stack

Note that this may include environment variables as defined by the stack_name_env
option:

stack_name: "rerun-{{RELEASE_VERSION}}"
stack_name_env:
 - RELEASE_VERSION

stack_name_env = [[string, (string_or_int_as_string)] , …]

A list of environment variables that are necessary for creating the stack name

stack_policy = valid_policy_json

The path to a json file for the cloudformation stack policy

stack_yaml = valid_stack_yaml

The path to a yaml file for the cloudformation stack definition

stackdriver = (optional) <options>

Stackdriver options used for giving events to stackdriver

api_key = (required) string

The api key used to gain access to stackdriver

deployment_version = (default=”<version>”) string

The version being deployed

suspend_actions = (default=False) boolean

Suspend Scheduled Actions for the stack before deploying, and resume Scheduled
actions after finished deploying.

This uses the auto_scaling_group_name attribute to determine what autoscaling group
to suspend and resume

tags = { valid_string(regex(^.{0,127}$)) : string }

A dictionary specifying the tags to apply to the stack

Cloudformation will apply these tags to all created resources

termination_protection = (default=False) boolean

Whether to enable termination protection for the stack

vars = delayed

A dictionary of variable definitions that may be referred to in other parts of the configuration

Environment

account_id = (required) (valid_string(regex(\d+)) or integer)

AWS account id for this environment

region = (default=”ap-southeast-2”) string

AWS region name for this environment

tags = { valid_string(regex(^.{0,127}$)) : string }

A dictionary specifying the tags to apply to the stack

Cloudformation will apply these tags to all created resources

vars = dictionary

A dictionary of variable definitions that may be referred to in other parts of the configuration

Password

bespin = “{bespin}”

The bespin object

crypto_text = (required) string

The encrypted version of the password

encryption_context = (optional) dictionary

Any encryption context

grant_tokens = (optional) [string, …]

List of any grant tokens

KMSMasterKey = (required) string

The kms master key id

name = “{_key_name_1}”

The name of the password

vars = dictionary

Extra variables

Formatter

Configuration values may reference other parts of the config using ‘replacement
fields’ surrounded by curly braces {}. Nested values can be referenced
using dot notation, eg: {foo.bar.quax}.
If you need to include a brace character in the literal text, it can be escaped
by doubling: {{ and }}.

Available fields:

	environment

	Current environment name as a string

	region

	Current environment’s region

	environments.<env_name>.*

	Environment mappings.

Environment fields includes:

	account_id

	Environment AWS account id

	region

	Environment AWS region

	stacks.<stack_name>.*

	Stack mappings.
See Stack spec for more detail.

	tags.*

	Tags mapping

	vars.*

	Vars mapping

Within a stack, bespin also defines the following aliases:

	__stack_name__

	Current stack name as a string.

	__stack__

	Current stack mapping (ie: stacks.__stack_name__).
See Stack spec for more detail.

	__environment__

	Current environment mapping (ie: environments.environment).

In addition to configuration fields, bespin defines the following special
values:

	config_root

	Directory of the main configuration file (ie: dirname of
--bespin-config)

	:config_dir

	(advanced) (python2.7+ or python3 required)

Directory of the configuration file where the value was defined. See
bespin.extra_files.

	_key_name_X

	(advanced)

Refers to the key’s content X positions up from the current value, indexed
from zero. For example, the following would result in “example vars test”:

stacks:
 test:
 vars:
 example: "{_key_name_0} {_key_name_1} {_key_name_2}"

Fields may also declare a formatter by suffixing the field with a colon :
and the name of the formatter to use.
Available formatters include:

	:env

	Formats environment variables suitable to be used in shell. {USER:env}
would produce ${USER}.

	:date

	Return a string representing the current datetime
(datetime.datetime.now()) formatted by strftime. See Python strftime [https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior]
for available format codes.
eg: {%Y:date} would result in the current year (eg: “2017”)

	:underscored

	Converts ‘-‘ to ‘_’.

	:count

	Returns the total number of elements in a list or CommaDelimitedList variable
as a string.

The total number of elements in a CommaDelimitedList should be one more than
the total number of commas. This implementation marries Cloudformation
Parameters [http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html] CommaDelimitedList’s implementation. Examples:

vars:
 one: "1" # {one:count} == "1"
 two: "1,2" # {two:count} == "2"
 three: "1,2,3" # {three:count} == "3"
 empty: "" # {empty:count} == "1"
 space: " " # {space:count} == "1"
 comma: "," # {comma:count} == "2"

Note

The formatter does not support nested values (eg: {a.{foo}.c}). See
Stacks for details on using variable formatting (ie: XXX_MYVAR_XXX)
instead.

Tasks

Bespin’s mechanism for doing anything are tasks. By default Bespin comes with a
number of tasks as describe below:

Default tasks

show

Show what stacks we have in layered order.

When combined with the --flat option, the stacks are shown as a flat
list instead of in layers.

	tail

	Tail the deployment of a stack

	become

	Print export statements for assuming an amazon iam role

	params

	Print out the params

	deploy

	Deploy a particular stack

	outputs

	Print out the outputs

	execute

	Exec a command using assumed credentials

	bastion

	SSH into the bastion

	downtime

	Downtime this stack in alerting systems

	instances

	Find and ssh into instances

	list_tasks

	List the available_tasks

	undowntime

	UnDowntime this stack in alerting systems

	deploy_plan

	Deploy a predefined list of stacks in order

	sanity_check

	Sanity check a stack and it’s dependencies

	num_instances

	Count the number of running instances.

	print_variable

	Prints out a variable from the stack

	scale_instances

	Change the number of instances in the stack’s auto_scaling_group

	encrypt_password

	Convert plain text password into crypto text

	publish_artifacts

	Build and publish an artifact

	sanity_check_plan

	sanity check a predefined list of stacks in order

	validate_templates

	Validates all stack templates and parameters against CloudFormation

	confirm_deployment

	Confirm deployment via SNS notification for each instance and/or url checks

	clean_old_artifacts

	Cleanup old artifacts

	wait_for_dns_switch

	Periodically check dns until all our sites point to where they should be pointing to for specified environment

	command_on_instances

	Run a shell command on all the instances in the stack

	sync_netscaler_config

	Sync netscaler configuration with the specified netscaler

	switch_dns_traffic_to

	Switch dns traffic to some environment

	create_stackdriver_event

	Create an event in stackdriver

	enable_server_in_netscaler

	Disable a server in the netscaler

	note_deployment_in_newrelic

	Note the deployment in newrelic

	disable_server_in_netscaler

	Enable a server in the netscaler

	resume_cloudformation_actions

	Resumes all schedule actions on a cloudformation stack

	suspend_cloudformation_actions

	Suspends all schedule actions on a cloudformation stack

Custom Tasks

There are two ways you can create custom tasks.

The first way is to define tasks as part of a stack definition:

stacks:
 app:
 [..]

 tasks:
 deploy_app:
 action: deploy

Will mean that you can run bespin deploy_app dev and it will run the deploy
action for your app stack.

Tasks have several options:

	action

	The task to run. Note that the stack will default to the stack you’ve defined
this task on.

	options

	Extra options to merge into the stack configuration when running the task.

	overrides

	Extra options to merge into the root of the configuration when running the task.

	description

	A description that is shown for this task when you ask Bespin to list all the
tasks.

The second way of defining custom tasks is with the extra_imports option.

For example, let’s say you have the following layout:

bespin.yml
app.json
scripts.py

And your bespin.yml looked like:

bespin:
 extra_imports:
 - ["{config_root}", "scripts"]

stacks:
 app:
 [..]

Then before Bespin looks for tasks it will first import the python module named
scripts that lives in the folder where bespin.yml is defined. So in this
case, the scripts.py.

The only thing scripts.py needs is a __bespin__(bespin, task_maker) method
where bespin is the Bespin object and task_maker is a function that
may be used to register tasks.

For example:

def __bespin__(bespin, task_maker):
 task_maker("deploy_app", "Deploy the app stack", action="deploy").specify_stack("app")

Here we have defined the deploy_app action that will deploy the app stack.

We can do something more interesting if we also define a custom action:

from bespin.tasks import a_task

def __bespin__(bespin, task_maker):
 task_maker("list_amis", "List amis with a particular tag")

@a_task(needs_credentials=True)
def list_amis(overview, configuration, **kwargs):
 credentials = configuration['bespin'].credentials
 amis = credentials.ec2.get_all_images(filters={"tag:application": "MyCreatedAmis"})
 for ami in amis:
 print(ami.id)

And then we can do bespin list_amis dev and it will find all the Amis that have
an application tag with MyCreatedAmis.

Stacks

Bespin revolves around the concept of a cloudformation stack. Defining them is
one of the required options in the Configuration.

A cloudformation stack has two parts to it:

	The template file

	Cloudformation is defined by a template file - see Cloudformation template
basics [http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/gettingstarted.templatebasics.html]

Currently bespin supports the JSON and YAML Cloudformation formats [http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-formats.html].

	The parameters

	Cloudformation has the idea of parameters, where you define variables in your
stack and then provide values for those variables at creation time.

Bespin provides the option of either specifying a file containing these values
or, more conveniently, you may specify them inline with the configuration as a
yaml dictionary.

So if you have the following directory structure:

/my-project/
 bespin.yml
 app.json
 params.json

And the following configuration:

environments:
 dev:
 account_id: "123456789"

stacks:
 app:
 stack_name: my-application
 stack_json: "{config_root}/app.json"
 params_json: "{config_root}/params.json"

Then bespin deploy dev app will deploy the app.json using params.json as
the parameters.

Where params.json looks like:

[{ "ParameterKey": "Key1"
 , "ParameterValue": "Value1"
 }
, { "ParameterKey": "Key2"
 , "ParameterValue": "Value2"
 }
]

An equivalent params.yaml file would look like:

Key1: Value1
Key2: Value2

Alternatively you can have inline the parameters like so:

environments:
 dev:
 account_id: "123456789"

stacks
 app:
 stack_name: my-application
 stack_json: "{config_root}/app.json"

 params_yaml:
 Key1: Value1
 Key2: Value2

Note

The stack_json and stack_yaml will default to
“{config_root}/{_key_name_1}.json” and “{config_root}/{_key_name_1}.yaml”.
This means if your stack json is the same name as the stack and next to your
configuration, then you don’t need to specify stack_json.

Defining variables

You can refer to variables defined in your configuration inside params_yaml using
a XXX_<VARIABLE>_XXX syntax. So if you have defined a variable called
my_ami then XXX_MY_AMI_XXX inside your params_yaml values will be
replaced with the value of that variable.

Note

This syntax is available in addition to the Configuration
Formatter. Formatter {} syntax will only
reference config values, and gets interpreted when loading the configuration.
Whereas the XXX_<VARIABLE>_XXX variable may be sourced from elsewhere
(see below: dynamic variables, environment
variables) and can be replaced at runtime.

So let’s say I have the following configuration:

vars:
 azs: "ap-southeast-2a,ap-southeast-2b"

environments:
 dev:
 account_id: "123456789"
 vars:
 vpcid: vpc-123456

 prod:
 account_id: "987654321"
 vars:
 vpcid: vpc-654321

stacks:
 app:
 stack_name: my-application
 vars:
 ami: ami-4321

 environments:
 dev:
 vars:
 min_size: 0

 prod:
 vars:
 min_size: 2

 params_yaml:
 ami: XXX_AMI_XXX
 AZs: XXX_AZS_XXX
 VpcId: XXX_VPCID_XXX
 MinSize: XXX_MIN_SIZE_XXX

Then you’ll get the following outputs:

$ bespin params dev app
my-application
[
 {
 "ParameterValue": "vpc-123456",
 "ParameterKey": "VPCId"
 },
 {
 "ParameterValue": "ap-southeast-2a,ap-southeast-2b",
 "ParameterKey": "AZs"
 },
 {
 "ParameterValue": "ami-4321",
 "ParameterKey": "ami"
 }
]

$ bespin params prod app
my-application
[
 {
 "ParameterValue": "vpc-654321",
 "ParameterKey": "VPCId"
 },
 {
 "ParameterValue": "ap-southeast-2a,ap-southeast-2b",
 "ParameterKey": "AZs"
 },
 {
 "ParameterValue": "ami-4321",
 "ParameterKey": "ami"
 }
]

If you’re looking closely enough you may notice that there is a hierarchy of
variables in the configuration. Bespin will essentially collapse this
hierarchy into one dictionary of variables at runtime before using them.

The order is:

<root>
<environment>
<stack>
<stack_environment>

Where values of the same name are overridden.

This allows you to have:

	Variables across all stacks for all environments

	Variables across all stacks for particular environments

	Variables specific to a stack for all environments

	Variables specific to a stack for particular environments

Note

The XXX_<VARIABLE>_XXX syntax is a search and replace, so you can
do something like:

environments:
 dev:
 account_id: "123456789"
 vars:
 subnet_a: subnet-12345
 subnet_b: subnet-67890

stacks:
 app:
 stack_name: my-application

 params_yaml:
 subnets: XXX_SUBNET_A_XXX,XXX_SUBNET_B_XXX

and reference more than one variable and intermingle with other characters.

Dynamic Variables

When you define a variable, you may also specify a list of two items:

vars:
 vpcid: [vpc-base, VpcId]
 zoneid: ["{stacks.dns-public}", ZoneId]

This is a special syntax and stands for [<stack_name>, <output_name>] and
will dynamically find the specified Cloudformation output [http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html] for that stack.

If the stack is in bespin’s config it can be referenced directly using the
Configuration Formatter, ie:
["{stacks.my_stack}", <output_name>]. This will use the stack_name from
my_stack and also add my_stack to this stack’s build_first
dependencies.

For those unfamiliar with cloudformation, it allows you to define Outputs for
your stacks. These outputs are essentially a Key-Value store of template defined
strings.

So in the example above, the vpcid variable would resolve to the VpcId
Output from the vpc-base cloudformation stack in the environment being
deployed to.

Environment Variables

You may populate variables with environment variables.

First you must specify env as a list of environment variables that need to
be defined and then you may refer to them using XXX_<VARIABLE>_XXX.

For example:

environments:
 dev:
 account_id: "123456789"

stacks:
 app:
 stack_name: my-application

 env:
 - BUILD_NUMBER
 - GIT_COMMIT

 params_yaml:
 Version: app-XXX_BUILD_NUMBER_XXX

Environment variables can also be defined with defaults or overrides.

	“BUILD_NUMBER”

	No default is specified, so if this variable isn’t in the environment at runtime
then bespin will complain and quit.

	“BUILD_NUMBER:123”

	A default has been specified, so if it’s not in the environment at runtime,
bespin will populate this variable with the value “123”

	“BUILD_NUMBER=123”

	An override has been specified. This means that regardless of whether this
environment variable has been specified or not, it will be populated with the
value of “123”

Note

To use environment variables in stack_name refer to Stack’s
stack_name and stack_name_env Configuration documentation.

Passwords

Bespin configuration can store KMS [http://docs.aws.amazon.com/kms/latest/developerguide/overview.html] encrypted passwords. Environments can
have different passwords, and optionally a different encryption key. If an
environment KMSMasterKey override is provided a new crypto_text must
obviously also be provided.

Example config:

environments:
 dev:
 account_id: 123456789
 prod:
 account_id: 987654321

passwords:
 my_secure_password:
 KMSMasterKey: "arn:aws:kms:ap-southeast-2:111111111:alias/developer_key"
 crypto_text: "EXAMPLEZdnUptmwQqlCnQIBEIAewbM7Amw786ZMGBzvqtpnWmK/Ou0jc3RygppQypuB"

 # environment 'prod' override
 prod:
 KMSMasterKey: "arn:aws:kms:ap-southeast-2:111111111:key/f65a25e4-1234-4195-8398-a4fcd2ba9c3f"
 crypto_text: "EXAMPLExCDgTs6i+kaQIBEIAef3P/39KEDRafROn0x+PkKZDH9JLPPBnTaVXz+KPj"

Passwords can be referenced via {passwords.name.crypto_text} and the
correct value for the environment will be used.

Passwords can be encrypted using bespin encrypt_password [environment]
[name]. The user will be prompted to enter the plaintext password via Python
getpass [https://docs.python.org/2/library/getpass.html] and then bespin will encrypt using the passwords.name
configuration for environment and output the crypto_text to stdout.

Password decryption

Warning

Care should be taken when passing around decrypted passwords as
bespin makes no effort to ensure the password is not logged.

Bespin has support for decrypting passwords, though extreme caution should be
taken when doing so. Under best practice, decrypted passwords should NOT be
referenced in bespin configuration.

Cloudformation parameters should always be passed in their encrypted form and
decrypted inside Cloudformation using Custom Resources [http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-custom-resources.html] (if needed).

Users implementing custom task code can reference the plaintext
decryption via passwords.name.decrypted.

Deployment

Bespin offers the ability to deploy stacks, taking into account dependency
resolution and deployment checking.

For example, let’s say we have the following configuration:

environment:
 dev:
 account_id: "12345789"

stacks:
 security_groups:
 stack_name: appplication_security_groups

 app:
 stack_name: application

 vars:
 app_security_groups: ["{stacks.security_groups}", "AppSecurityGroup"]

 params_yaml:
 AppSecurityGroup: XXX_APP_SECURITY_GROUP_XXX

 build_after:
 - dns

 dns:
 stack_name: application-dns

And we do bespin deploy dev app, then it will first deploy security_groups,
use the output from that stack as a variable for the parameters for the app
stack, which gets deployed next. After the app stack is deployed, the dns stack
will then be deployed (because of the build_after option).

Plans

You can explicitly specify an order of stacks by creating a plan:

environments:
 dev:
 account_id: "12345678"

plan:
 all:
 - vpc
 - gateways
 - subnets
 - subnet_rules
 - nat
 - dns
 - dhcp
 - dns_names
 - peering

stacks:
 vpc:
 [..]

 gateways:
 [..]

 [..etc..]

And then you may deploy that plan with bespin deploy_plan dev all

Confirming deployment

It’s useful to be able to confirm that a deployment was actually successful even
if the cloudformation successfully deployed:

environments:
 dev:
 account_id: "123456789"

stacks:
 app:
 stack_name: application

 env:
 - BUILD_NUMBER

 params_yaml:
 BuildNumber: XXX_BUILD_NUMBER_XXX

 confirm_deployment:
 url_checker:
 expect: "{{BUILD_NUMBER}}"
 endpoint: ["{stacks.app}", PublicEndpoint]
 check_url: /diagnostic/version
 timeout_after: 600

In this example, the deployment is checked by checking that a url returns some
expected value. In this case it expects the url /diagnostic/version to return
the BUILD_NUMBER we deployed with.

Confirm_deployment has multiple options

	url_checker

	As per the example above, this checks a url on our app returns a particular
value

	sns_confirmation:

	This confirms that an sqs topic receives a particular message:

confirm_deployment:
 auto_scaling_group_name: AppServerAutoScalingGroup

 sns_confirmation:
 timeout: 300
 version_message: "{{BUILD_NUMBER}}"
 deployment_queue: deployment-queue

This configuration will expect that the sqs queue called deployment-queue
will receive a message for each new instance in the auto scaling group saying
<instance_id>:success:<version_message>

Actually sending these messages is up to the definition of the cloudformation
stack.

Note

The naming of this is the result of an implementation detail where
this was first implemented for a stack that populated the sqs queue via an
sns notification.

	deploys_s3_path:

	This allows you to specify an s3 path that you expect to have a value with a
modified time newer than the deployment of the stack:

confirm_deployment:
 deploys_s3_path:
 - ["s3://my-bucket/generated/thing.tar.gz", 600]

Where the number is the timeout of looking for this s3 path.

When zero instances is ok

In some environments it may be ok that a stack deploys and has no instances
associated with it. In this case you may set the zero_instances_is_ok: true.

If this isn’t set and no instances are in the autoscaling group after the stack
is deployed, then Bespin will complain saying the deployment failed to make any
instances:

environments:
 dev:
 account_id: "123456789"

 prod:
 account_id: "123456789"

stacks:
 app:
 stack_name: my-application

 confirm_deployment:
 auto_scaling_group_name: AppServerAutoScalingGroup

 url_checker:
 endpoint: endpoint.my-company.com
 expects: success
 check_url: /diagnostic/status

 # Add zero_instances_is_ok just for the dev environment
 environments:
 dev:
 confirm_deployment:
 zero_instances_is_ok: true

Artifacts

Bespin lets you define, create and upload artifacts as defined in the configuration.
Where an artifact is just an archive of files either generated or taken from the
filesystem.

Artifacts are defined per stack:

environments:
 dev:
 account_id: "123456789"

stacks:
 app:
 artifacts:
 main:
 compression_type: gz

 upload_to: s3://my-bucket/artifacts/main.tar.gz

 paths:
 - ["{config_root}/ansible", "/ansible"]

With this example, bespin publish_artifacts dev app will create an archive of
an ansible folder next to the configuration, which is uploaded to
s3://my-bucket/artifacts/main.tar.gz.

Specifying the contents

There are currently a few ways of specifying the contents of the archive:

	paths

	As in the example above, paths is a list of lists. Each item in the list being
[<local_location>, <location_in_archive>] and will take from the local
location and put into the archive under the location that is specified.

	files

	Allows you to add files into the archive. For example:

files:
 - content: |
 A file
 with content
 goes here
 dest: /location/in/archive.txt

This creates a file at /location/in/archive.txt with the content as
specified.

You can also generate the content from a custom task. So say
you’ve defined a custom task called generate_ansible_playbook then you can
specify:

files:
 - task: generate_ansible_playbook
 dest: /ansible/playbook.yml

	commands

	This one lets you copy files from your disk into some temporary location, edit
any files as you see fit, run an arbitrary command in the temporary location
and add files from there into the archive:

commands:
 - copy:
 - ["{config_root}/../../play-app", "/"]
 modify:
 "conf/application.conf":
 append:
 - 'app_version="{__stack__.vars.version}"'
 command: "sbt dist"
 add_into_tar:
 - ["target/universal/{vars.app_name}-SNAPSHOT.zip", "/artifacts/{vars.app_name}.zip"]

Here we’ve copied our play-app into the root of the temporary location,
added the version to the application.conf, run sbt dist in the
temporary location, and then added the resulting file into the archive under
/artifacts/<app_name>.zip

Environment Variables

It’s useful to be able to pass in environment variables, like the build number
and then use it. This is done with build_env, which acts like env

For example:

environments:
 dev:
 account_id: "123456789"

stacks:
 app:
 build_env:
 - BUILD_NUMBER
 - GIT_COMMIT

 vars:
 version: "{{BUILD_NUMBER}}-{{GIT_COMMIT}}"

 artifacts:
 main:
 upload_to: "s3://my-bucket/artifacts/app-{{BUILD_NUMBER}}.tar.gz"

 files:
 - content: {__stack__.vars.version}
 dest: /artifacts/version.txt

 paths:
 - ["{config_root}/ansible", /ansible]

Note that referring to environment variables is done with “{{<variable>}}”. This
is because bespin formats the string twice, once with the configuration, and a
second time with the environment variables.

Cleaning up artifacts

It’s dangerous to clean up artifacts with a time based policy in S3 because if
you don’t create new artifacts for a long enough amount of time, then s3 will
clean up an artifact that is used by production and so when new machines come up
there won’t be an artifact.

Instead, it is better to manually clean up artifacts and keep a certain number
of previous artifacts.

Bespin helps this with the clean_old_artifacts task:

environments:
 dev:
 account_id: "123456789"

stacks:
 app:
 build_env:
 - BUILD_NUMBER

 artifacts:
 main:
 history_length: 5
 cleanup_prefix: app-

 compression_type: gz
 upload_to: "s3://my-bucket/artifacts/app-{{BUILD_NUMBER}}.tar.gz"

 paths:
 - ["{config_root}/ansible", /ansible]

With this configuration, bespin clean_old_artifacts dev app will find all
the artifacts under s3://my-bucket/artifacts with the prefix app-, keep
the newest 5 and delete the rest.

Note

If you just want to use the clean_old_artifacts logic but your artifacts
are generated and uploaded by something else, then specify not_created_here: true

SSH’ing into instances

It’s useful to be able to ssh into instances that your bring up in your stack.

Note

bespin uses RadSSH which honours ssh_config(5) (ie: ~/.ssh/config).
Users may want to set StrictHostKeyChecking no to ignore hostkeys and/or
UserKnownHostsFile /dev/null to prevent host key additions for
dynamic/cloud instances.

Bespin provides the instances command for finding the instances, getting the
ssh key, and ssh’ing into one of the instances.

This command also handles going via a jumphost/bastion instance.

environments:
 dev:
 account_id: "123456789"

stacks:
 app:
 stack_name: my_application

 ssh:
 bastion_host: bastion.my_company.com
 bastion_user: ec2-user
 bastion_key_path: "{config_root}/{environment}/bastion_ssh_key.pem"

 user: ec2-user
 auto_scaling_group_name: AppServerAutoScalingGroup
 instance_key_path: "{config_root}/{environment}/ssh_key.pem

With this configuration, bespin instances dev app will look for all the
instances in the AppServerAutoScalingGroup defined by the my_application
cloudformation stack and list the ips:

$ bespin instances dev app
Found 1 instances
====================
i-d848ca04 10.35.3.151 running Up 9990 seconds

Then you can run bespin instances dev app 10.35.3.151 and with this configuration
will ssh through ec2-user@bastion.my_company.com into ec2-user@10.35.3.151.

If the bastion options are not specified, then no bastion is used.

Fetching ssh keys from Rattic

Bespin offers the ability to fetch ssh keys stored in Rattic [http://rattic.org/]:

environments:
 dev:
 account_id: "123456789"

stacks:
 app:
 stack_name: my_application

 ssh:
 bastion_host: bastion.my_company.com
 bastion_user: ec2-user
 bastion_key_path: "{config_root}/{environment}/bastion_ssh_key.pem"
 bastion_key_location: "2200"

 user:ec2-user
 auto_scaling_group_name: Appserverautoscalinggroup
 instance_key_location: "2201"

 storage_type: rattic
 storage_host: rattic.my_company.com
 instance_key_path: "{config_root}/{environment}/ssh_key.pem

With this configuration, if bespin can’t find the ssh key specified by
bastion_key_path and instance_key_path then it will get the ssh keys
from rattic.my_company.com using the key ids specified by bastion_key_location
and instance_key_location.

Note that the ssh keys must be uploaded to rattic as ssh keys, not as attachments.

Note

The instance_key_path and bastion_key_path in these two examples are
the same as the defaults, so leaving them out would have the same effect.

Specifying hosts

The hosts can be found by either specifying auto_scaling_group_name which
will look for all the instances attached to that scaling group, or by specifying
instance which will look for that instance as specified in the cloudformation
stack.

For example, if my stack.json has this in it:

{ "Resources":
 { "MyInstance":
 { "Type": "AWS::EC2::Instance"
 , "Properties": [..]
 }
 }
}

Then I can specify it by having:

ssh:
 user: ec2-user
 instance: MyInstance

When you do this you may also specify an address that is displayed instead of
an ip address:

ssh:
 user: ec2-user
 instance: BastionHost
 address: bastion.{environment}.my-company.com

So you’d get something like:

$ bespin instances dev app
Found 1 instances
====================
i-d848ca04 bastion.dev.my-company.com running Up 9001 seconds

$ bespin instances prod app
Found 1 instances
====================
i-f849ca94 bastion.prod.my-company.com running Up 9001 seconds

Index

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Project Dormant

_static/ajax-loader.gif

_images/bespin.png
“build passing

